Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Biochemistry ; 63(7): 855-864, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498694

RESUMO

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Proteínas de Repetição de Anquirina Projetadas , Aquaporina 4/genética , Epitopos , Imunoglobulina G
2.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338949

RESUMO

The water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear. This review summarizes the current knowledge on the role of AQP4 dysfunction in the progression of α-synuclein pathology, considering the possible effects of AQP4 dysregulation on brain molecular mechanisms that can impact α-synuclein modification, accumulation and aggregation. It also highlights future directions that can help study the role of AQP4 in the functioning of the protective mechanisms of the brain during the development of PD and other neurodegenerative diseases.


Assuntos
Aquaporina 4 , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , alfa-Sinucleína/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Água/metabolismo
4.
Glia ; 72(5): 982-998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363040

RESUMO

The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.


Assuntos
Clorofenóis , Sistema Glinfático , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Clorofenóis/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo
5.
Anticancer Res ; 44(2): 567-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307548

RESUMO

BACKGROUND/AIM: Aquaporins (AQPs) were initially discovered as water channel proteins that facilitate transcellular water movements. Recent studies have shown that AQPs are expressed and play an oncogenic role in various cancers. However, the expression and role of Aquaporin 4 (AQP4) in colon cancer have not been investigated. This study aimed to examine the clinical and pathophysiologic significance of AQP4 in colon cancer. PATIENTS AND METHODS: Immunohistochemistry (IHC) of AQP4 for 145 primary tumor samples obtained from patients with stage II or III colon cancer was performed, and the relationship between AQP4 expression and patients' prognoses was analyzed. Knockdown experiments with AQP4 small interfering RNA using human colon cancer cells were conducted to analyze the effects on cell invasiveness. RESULTS: IHC revealed that AQP4 was scarcely expressed in the noncancerous colonic mucosa. Of the 145 patients who enrolled in this study, 109 (75.2%) and 36 (24.8%) patients were classified as negative and positive for AQP4 expression, respectively. A high level of AQP4 expression is significantly associated with deeper tumors with lymph node metastasis and venous invasion. A 5-year progression-free survival rate of AQP4-positive patients was significantly worse than that of AQP-4 negative patients (70.7% vs. 87.0%, p=0.049). Furthermore, AQP4 knockdown significantly inhibited cell migration and invasion in HCT116 cells. CONCLUSION: AQP4 may be a novel biomarker and therapeutic target for colon cancer.


Assuntos
Aquaporina 4 , Neoplasias do Colo , Humanos , Aquaporina 4/genética , Aquaporina 4/metabolismo , RNA Interferente Pequeno/genética , Imuno-Histoquímica , Neoplasias do Colo/genética , Aquaporina 1/genética , Aquaporina 1/metabolismo
6.
J Chromatogr A ; 1717: 464701, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310704

RESUMO

Anti-aquaporin-4 autoantibodies (AQP4-IgG) are implicated in the pathogenesis of neuromyelitis optica spectrum disorders (NMOSD), and their removal from the blood circulation is considered to be an effective method for acute treatment. An ideal extracorporeal AQP4-IgG removal system should have high specificity, which means that it can selectively remove AQP4-IgG without affecting normal immunoglobulins. However, the conventional tryptophan immobilized column lacks sufficient specificity and cannot achieve this goal. In this study, we successfully prepared a fusion protein chimeric AQP4, which consists of the complete antigenic epitopes of human AQP4 and the constant region of scaffold protein DARPin. Chimeric AQP4 was expressed and purified from Escherichia coli, and then immobilized on agarose gel as a ligand for selective capture of AQP4-IgG immunosorbent. The prepared immunosorbent had a theoretical maximum adsorption capacity of 20.48 mg/g gel estimated by Langmuir isotherm. In vitro plasma perfusion tests demonstrated that the chimeric AQP4 coupled adsorbent had remarkable adsorption performance, and could eliminate more than 85 % of AQP4-IgG under the gel-to-plasma ratio of 1:50. Moreover, it exhibited high specificity because other human plasma proteins were not adsorbed in the dynamic adsorption experiment. These results suggest that the chimeric AQP4 coupled immunosorbent can provide a new approach for specific immunoadsorption (IA) treatment of NMOSD.


Assuntos
Aquaporina 4 , Neuromielite Óptica , Humanos , Aquaporina 4/genética , Imunoadsorventes , Neuromielite Óptica/terapia , Imunoglobulina G , Epitopos
7.
Mol Biotechnol ; 66(1): 34-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36997697

RESUMO

An increasing number of studies reveal the deleterious effects of isoflurane (Iso) exposure during pregnancy on offspring cognition. However, no effective therapeutic strategy for Iso-induced deleterious effects has been well developed. Angelicin exerts an anti-inflammatory effect on neurons and glial cells. This study investigated the roles and mechanism of action of angelicin in Iso-induced neurotoxicity in vitro and in vivo. After exposing C57BL/6 J mice on embryonic day 15 (E15) to Iso for 3 and 6 h, respectively, neonatal mice on embryonic day 18 (E18) displayed obvious anesthetic neurotoxicity, which was revealed by the elevation of cerebral inflammatory factors and blood-brain barrier (BBB) permeability and cognitive dysfunction in mice. Angelicin treatment could not only significantly reduce the Iso-induced embryonic inflammation and BBB disruption but also improve the cognitive dysfunction of offspring mice. Iso exposure resulted in an increase of carbonic anhydrase (CA) 4 and aquaporin-4 (AQP4) expression at both mRNA and protein levels in vascular endothelial cells and mouse brain tissue collected from neonatal mice on E18. Remarkably, the Iso-induced upregulation of CA4 and AQP4 expression could be partially reversed by angelicin treatment. Moreover, GSK1016790A, an AQP4 agonist, was used to confirm the role of AQP4 in the protective effect of angelicin. Results showed that GSK1016790A abolished the therapeutic effect of angelicin on Iso-induced inflammation and BBB disruption in the embryonic brain and on the cognitive function of offspring mice. In conclusion, angelicin may serve as a potential therapeutic for Iso-induced neurotoxicity in neonatal mice by regulating the CA4/AQP4 pathway.


Assuntos
Disfunção Cognitiva , Furocumarinas , Isoflurano , Leucina/análogos & derivados , Sulfonamidas , Gravidez , Feminino , Camundongos , Animais , Isoflurano/toxicidade , Anidrase Carbônica IV/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Aquaporina 4/genética , Aquaporina 4/metabolismo , Furocumarinas/efeitos adversos , Inflamação , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/psicologia , Cognição
8.
J Neurochem ; 168(2): 100-114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102893

RESUMO

The aquaporin-4 (AQP4) water channel is abundantly expressed in the glial cells of the central nervous system and facilitates brain swelling following diverse insults, such as traumatic injury or stroke. Lack of specific and therapeutic AQP4 inhibitors highlights the need to explore alternative routes to control the water permeability of glial cell membranes. The cell surface abundance of AQP4 in mammalian cells fluctuates rapidly in response to changes in oxygen levels and tonicity, suggesting a role for vesicular trafficking in its translocation to and from the cell surface. However, the molecular mechanisms of AQP4 trafficking are not fully elucidated. In this work, early and recycling endosomes were investigated as likely candidates of rapid AQP4 translocation together with changes in cytoskeletal dynamics. In transiently transfected HEK293 cells a significant amount of AQP-eGFP colocalised with mCherry-Rab5-positive early endosomes and mCherry-Rab11-positive recycling endosomes. When exposed to hypotonic conditions, AQP4-eGFP rapidly translocated from intracellular vesicles to the cell surface. Co-expression of dominant negative forms of the mCherry-Rab5 and -Rab11 with AQP4-eGFP prevented hypotonicity-induced AQP4-eGFP trafficking and led to concentration at the cell surface or intracellular vesicles respectively. Use of endocytosis inhibiting drugs indicated that AQP4 internalisation was dynamin-dependent. Cytoskeleton dynamics-modifying drugs also affected AQP4 translocation to and from the cell surface. AQP4 trafficking mechanisms were validated in primary human astrocytes, which express high levels of endogenous AQP4. The results highlight the role of early and recycling endosomes and cytoskeletal dynamics in AQP4 translocation in response to hypotonic and hypoxic stress and suggest continuous cycling of AQP4 between intracellular vesicles and the cell surface under physiological conditions.


Assuntos
Endocitose , Endossomos , Animais , Humanos , Células HEK293 , Transporte Proteico , Endossomos/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Mamíferos/metabolismo
9.
Neurochem Res ; 49(3): 583-596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114727

RESUMO

Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.


Assuntos
MicroRNAs , Doenças do Sistema Nervoso , Humanos , Aquaporina 4/genética , Aquaporina 4/metabolismo , Qualidade de Vida , RNA não Traduzido/metabolismo , Doenças do Sistema Nervoso/genética , Regulação para Baixo
10.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138980

RESUMO

Multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocytes glycoprotein-antibody disease (MOGAD) are distinct autoimmune demyelinating disorders characterized by varying clinical and pathological characteristics. While the precise origins of these diseases remain elusive, a combination of genetic and environmental factors, including viral elements, have been suggested as potential contributors to their development. Our goal was to assess the occurrence of antibodies against pathogenic peptides associated with Epstein-Barr virus (EBV) and the human endogenous retrovirus-W (HERV-W) in serum samples obtained from Japanese individuals diagnosed with MS, NMOSD, and MOGAD and to make comparisons with a group of healthy controls (HCs). We conducted a retrospective analysis involving 114 Japanese participants, comprising individuals with MS (34), NMOSD (20), MOGAD (20), and HCs (40). These individuals were tested using a peptide-based enzyme-linked immunosorbent assay. A marked increase in antibody response against EBV nuclear antigen 1 (EBNA1)386-405 was observed in the serum of MS and MOGAD patients, as compared to HCs. Notably, we observed a correlation between antibodies against EBNA1386-405 and HERV-W486-504 peptides in a subset of the antibody-positive MS patients. These findings emphasize the involvement of EBV in the pathogenesis of MS and potentially MOGAD, suggesting its role in the reactivation of HERV-W.


Assuntos
Retrovirus Endógenos , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Neuromielite Óptica , Humanos , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Estudos Retrospectivos , Japão , Anticorpos/genética , Peptídeos/genética , Glicoproteína Mielina-Oligodendrócito , Autoanticorpos , Aquaporina 4/genética
11.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958666

RESUMO

Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-ß (Aß) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aß deposits in retinal layers. Since brain Aß transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aß deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aß, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Camundongos , Humanos , Feminino , Animais , Lactente , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Retina/metabolismo , Aquaporina 4/genética , Expressão Gênica , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo , Placa Amiloide/metabolismo
12.
Ann Clin Transl Neurol ; 10(12): 2413-2420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804003

RESUMO

Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/genética , Aquaporina 4/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoglobulina G , Receptores de IgG/genética
13.
Eur J Neurol ; 30(12): 3819-3827, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37540821

RESUMO

BACKGROUND AND PURPOSE: Prodromal infections are associated with neuromyelitis optica spectrum disorder (NMOSD), but it remains unclear which type of infection has a causal association with NMOSD. We aimed to explore the causal associations between four herpesvirus infections (chickenpox, cold sores, mononucleosis and shingles) and NMOSD, as well as between other types of infections and NMOSD. METHODS: For data on infections, we used the genome-wide association study (GWAS) summary statistics from the 23andMe cohort. For outcomes, we used the GWAS data of participants of European ancestry, including 215 NMOSD patients (132 anti-aquaporin-4 antibody [AQP4-ab]-positive patients and 83 AQP4-ab-negative patients) and 1244 normal controls. Single-nucleotide polymorphism (SNP) identification and two-sample Mendelian randomization (MR) analyses were then performed. RESULTS: In the 23andMe cohort, we identified one SNP for chickenpox (rs9266089 in HLA-B gene), one SNP for cold scores (rs885950 in the POU5F1 gene), one SNP for mononucleosis (rs2596465 in the HCP5 gene), and three SNPs for shingles (rs2523591 in the HLA-B gene; rs7047299 in the IFNA21 gene; rs9260809 in the MICD gene). The association between cold sores and AQP4-ab-positive NMOSD reached statistical significance (odds ratio [OR] 745.318; 95% confidence interval [CI] 22.176, 25,049.53 [p < 0.001, Q < 0.001]). The association between shingles and AQP4-ab-positive NMOSD was also statistically significant (OR 21.073; 95% CI 4.271, 103.974 [p < 0.001, Q < 0.001]). No significant association was observed between other infections and AQP4-ab-positive or AQP4-ab-negative NMOSD. CONCLUSION: These findings suggest there are positive associations between cold sores and shingles and AQP4-ab-positive NMOSD, indicating there may be causal links between herpes simplex virus and varicella-zoster virus infection and AQP4-ab-positive NMOSD.


Assuntos
Varicela , Herpes Labial , Herpes Zoster , Neuromielite Óptica , Humanos , Neuromielite Óptica/genética , Aquaporina 4/genética , Varicela/complicações , Estudo de Associação Genômica Ampla , Herpes Labial/complicações , Análise da Randomização Mendeliana , Autoanticorpos , Herpes Zoster/complicações , Antígenos HLA-B
14.
Mol Neurobiol ; 60(11): 6212-6226, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37436602

RESUMO

Cognitive impairment refers to notable declines in cognitive abilities including memory, language, and emotional stability leading to the inability to accomplish essential activities of daily living. Astrocytes play an important role in cognitive function, and homeostasis of the astrocyte-neuron lactate shuttle (ANLS) system is essential for maintaining cognitive functions. Aquaporin-4 (AQP-4) is a water channel expressed in astrocytes and has been shown to be associated with various brain disorders, but the direct relationship between learning, memory, and AQP-4 is unclear. We examined the relationship between AQP-4 and cognitive functions related to learning and memory. Mice with genetic deletion of AQP-4 showed significant behavioral and emotional changes including hyperactivity and instability, and impaired cognitive functions such as spatial learning and memory retention. 18 F-FDG PET imaging showed significant metabolic changes in the brains of AQP-4 knockout mice such as reductions in glucose absorption. Such metabolic changes in the brain seemed to be the direct results of changes in the expression of metabolite transporters, as the mRNA levels of multiple glucose and lactate transporters in astrocytes and neurons were significantly decreased in the cortex and hippocampus of AQP-4 knockout mice. Indeed, AQP-4 knockout mice showed significantly higher accumulation of both glucose and lactate in their brains compared with wild-type mice. Our results show that the deficiency of AQP-4 can cause problems in the metabolic function of astrocytes and lead to cognitive impairment, and that the deficiency of AQP4 in astrocyte endfeet can cause abnormalities in the ANLS system.


Assuntos
Aquaporina 4 , Disfunção Cognitiva , Ácido Láctico , Animais , Humanos , Camundongos , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos Knockout , Neurônios/metabolismo
15.
Sci Signal ; 16(788): eadd6364, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279286

RESUMO

Brain swelling causes morbidity and mortality in various brain injuries and diseases but lacks effective treatments. Brain swelling is linked to the influx of water into perivascular astrocytes through channels called aquaporins. Water accumulation in astrocytes increases their volume, which contributes to brain swelling. Using a mouse model of severe ischemic stroke, we identified a potentially targetable mechanism that promoted the cell surface localization of aquaporin 4 (AQP4) in perivascular astrocytic endfeet, which completely ensheathe the brain's capillaries. Cerebral ischemia increased the abundance of the heteromeric cation channel SUR1-TRPM4 and of the Na+/Ca2+ exchanger NCX1 in the endfeet of perivascular astrocytes. The influx of Na+ through SUR1-TRPM4 induced Ca2+ transport into cells through NCX1 operating in reverse mode, thus raising the intra-endfoot concentration of Ca2+. This increase in Ca2+ stimulated calmodulin-dependent translocation of AQP4 to the plasma membrane and water influx, which led to cellular edema and brain swelling. Pharmacological inhibition or astrocyte-specific deletion of SUR1-TRPM4 or NCX1 reduced brain swelling and improved neurological function in mice to a similar extent as an AQP4 inhibitor and was independent of infarct size. Thus, channels in astrocyte endfeet could be targeted to reduce postischemic brain swelling in stroke patients.


Assuntos
Edema Encefálico , AVC Isquêmico , Canais de Cátion TRPM , Humanos , Edema Encefálico/genética , Edema Encefálico/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , AVC Isquêmico/metabolismo , Água/metabolismo , Cátions/metabolismo , Canais de Cátion TRPM/metabolismo
16.
Sci Rep ; 13(1): 9662, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316571

RESUMO

Aquaporin-4 (AQP4) has been implicated in post-traumatic syringomyelia (PTS), a disease characterised by the formation of fluid-filled cysts in the spinal cord. This study investigated the expression of AQP4 around a mature cyst (syrinx) and the effect of pharmacomodulation of AQP4 on syrinx size. PTS was induced in male Sprague-Dawley rats by computerized spinal cord impact and subarachnoid kaolin injection. Immunofluorescence of AQP4 was carried out on mature syrinx tissue 12 weeks post-surgery. Increased AQP4 expression corresponded to larger, multiloculated cysts (R2 = 0.94), yet no localized changes to AQP4 expression in perivascular regions or the glia limitans were present. In a separate cohort of animals, at 6 weeks post-surgery, an AQP4 agonist (AqF026), antagonist (AqB050), or vehicle was administered daily over 4 days, with MRIs performed before and after the completion of treatment. Histological analysis was performed at 12 weeks post-surgery. Syrinx volume and length were not altered with AQP4 modulation. The correlation between increased AQP4 expression with syrinx area suggests that AQP4 or the glia expressing AQP4 are recruited to regulate water movement. Given this, further investigation should examine AQP4 modulation with dose regimens at earlier time-points after PTS induction, as these may alter the course of syrinx development.


Assuntos
Cistos , Siringomielia , Animais , Masculino , Ratos , Aquaporina 4/genética , Ratos Sprague-Dawley , Siringomielia/etiologia
17.
Sci Rep ; 13(1): 9372, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296187

RESUMO

Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory disorders of the central nervous system targeting aquaporin-4 (AQP4). The risk factors for NMOSD remain to be determined, though they may be related to diet and nutrition. This study aimed to explore the possibility of a causal relationship between specific food intake and AQP4-positive NMOSD risk. The study followed a two-sample Mendelian randomization (MR) design. Genetic instruments and self-reported information on the intake of 29 types of food were obtained from a genome-wide association study (GWAS) on 445,779 UK Biobank participants. A total of 132 individuals with AQP4-positive NMOSD and 784 controls from this GWAS were included in our study. The associations were evaluated using inverse-variance-weighted meta-analysis, weighted-median analysis, and MR-Egger regression. A high consumption of oily fish and raw vegetables was associated with a decreased risk of AQP4-positive NMOSD (odds ratio [OR] = 1.78 × 10-16, 95% confidence interval [CI] = 2.60 × 10-25-1.22 × 10-7, p = 0.001; OR = 5.28 × 10-6, 95% CI = 4.67 × 10-11-0.598, p = 0.041, respectively). The results were consistent in the sensitivity analyses, and no evidence of directional pleiotropy was observed. Our study provides useful implications for the development of AQP4-positive NMOSD prevention strategies. Further research is needed to determine the exact causal relationship and mechanisms underlying the association between specific food intake and AQP4-positive NMOSD.


Assuntos
Neuromielite Óptica , Animais , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/genética , Neuromielite Óptica/complicações , Verduras/genética , Estudo de Associação Genômica Ampla , Distribuição Aleatória , Aquaporina 4/genética , Autoanticorpos/genética
18.
Brain ; 146(8): 3444-3454, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143309

RESUMO

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Assuntos
Edema Encefálico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/genética , Edema Encefálico/genética , Edema Encefálico/metabolismo , Mutação/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Encéfalo/metabolismo , Astrócitos/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Int J Med Sci ; 20(6): 797-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213674

RESUMO

Currently, no specific and standard treatment for traumatic brain injury (TBI) has been developed. Therefore, studies on new therapeutic drugs for TBI treatment are urgently needed. Trifluoperazine (TFP) is a therapeutic agent for the treatment of psychiatric disorders that reduces edema of the central nervous system. However, the specific working mechanism of TFP is not fully understood in TBI. In this study, the immunofluorescence co-localization analysis revealed that the area and intensity covered by Aquaporin4 (AQP4) on the surface of brain cells (astrocyte endfeet) increased significantly after TBI. In contrast, TFP treatment reversed these phenomena. This finding showed that TFP inhibited AQP4 accumulation on the surface of brain cells (astrocyte endfeet). The tunel fluorescence intensity and fluorescence area were lower in the TBI+TFP group compared to the TBI group. Additionally, the brain edema, brain defect area, and modified neurological severity score (mNSS) were lower in the TBI+TFP. The RNA-seq was performed on the cortical tissues of rats in the Sham, TBI, and TBI+TFP groups. A total of 3774 genes differently expressed between the TBI and the Sham group were identified. Of these, 2940 genes were up-regulated and 834 genes were down-regulated. A total of 1845 differently expressed genes between the TBI+TFP and TBI group were also identified, in which 621 genes were up-regulated and 1224 genes were down-regulated. Analysis of the common differential genes in the three groups showed that TFP could reverse the expression of apoptosis and inflammation genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in the signaling pathways regulating inflammation. In conclusion, TFP alleviates brain edema after TBI by preventing the accumulation of AQP4 on the surface of brain cells. Generally, TFP alleviates apoptosis and inflammatory response induced by TBI, and promotes the recovery of nerve function in rats after TBI. Thus, TFP is a potential therapeutic agent for TBI treatment.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Animais , Ratos , Apoptose/genética , Aquaporina 4/antagonistas & inibidores , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo , Edema Encefálico/etiologia , Edema Encefálico/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Trifluoperazina/farmacologia , Trifluoperazina/uso terapêutico , Trifluoperazina/metabolismo
20.
J Neurovirol ; 29(3): 258-271, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191905

RESUMO

Neurocognitive impairments are more frequent in people with HIV (PWH) compared to their uninfected counterparts. HIV-associated neurocognitive disorder (HAND) is a spectrum disorder and up to 50% of PWH are reported to suffer from HAND. Altered waste clearance from the brain, chronic neuroinflammation and impaired metabolic processes may contribute to abnormal aging in PWH and are more common among those who suffer from HAND. Thus, it is important to identify earlier predictors for development of HAND. A key contributor to cognitive impairment in HIV and in Alzheimer's disease (AD) is formation and accumulation of aberrant proteins including hyperphosphorylated Tau (pTau). Previous data from AD and traumatic brain injury studies report that impaired waste clearance from the brain contributes in part to cognitive impairments. Evidence suggests that the aquaporin 4 (aqp4) gene may have an important role in waste clearance from the brain as single nucleotide polymorphisms (SNPs) in aqp4 have been reported to associate with changes in cognitive decline in AD patients. Given some similarities between HAND and AD, we assessed potential associations of several aqp4 SNPS with cognitive impairment in PWH. Our data show that homozygous carriers of the minor allele in SNPs rs3875089 and rs3763040 had significantly lower neuropsychological test Z-scores in multiple domains compared to the other genotypes. Interestingly, this decrease in Z-scores was only observed in PWH and not in HIV-control participants. Conversely, homozygosity of the minor allele of rs335929 associated with better executive function in PWH. Based on these data, tracking large cohorts of PWH to determine if the presence of these SNPs associate with cognitive changes during disease progression is of interest. Furthermore, screening PWH for SNPs that may be associated with cognitive impairment risk after diagnosis could be considered in alignment with traditional treatment plans to potentially work on skills in areas shown to have cognitive decline with these SNPs present.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Infecções por HIV , Humanos , Polimorfismo de Nucleotídeo Único , Aquaporina 4/genética , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/psicologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Doença de Alzheimer/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...